您现在的位置是: 首页 > 小学作文 小学作文
人教版六年级上册数学_人教版六年级上册数学电子书
zmhk 2024-05-30 人已围观
简介人教版六年级上册数学_人教版六年级上册数学电子书 感谢大家参与这个关于人教版六年级上册数学的问题集合。作为一个对此领域有一定了解的人,我将以客观和全面的方式回答每个问题,并分享
感谢大家参与这个关于人教版六年级上册数学的问题集合。作为一个对此领域有一定了解的人,我将以客观和全面的方式回答每个问题,并分享一些相关的研究成果和学术观点。
1.?˽̰????꼶?ϲ???ѧ
2.小学六年级数学上册教学反思
3.六年级上册数学负数的认识教学设计
4.求小学六年级上册的数学概念
?˽̰????꼶?ϲ???ѧ
这些数字概念我们都收集整理好了,请查收!我们都整理成集,分享给你,希望对你有帮助。
《小学阶段语文、英语、数字、音乐、美术、体育、自然、科学等》百度网盘资源大全
链接:/s/1znmI8mJTas01m1m03zCRfQ
?pwd=1234?提取码:1234
对于小学阶段所涉及到的各科各类资料,我拍改们都收集、归类并定期更新。欢迎有需求的家长、老师收藏。
小学六年级数学上册教学反思
没有加倍的勤奋,就没有才能,也没有天才。天才其实就是可以持之以恒的人。勤能补拙是良训,一分辛苦一分才,勤奋一直都是学习通向成功的最好捷径。下面是我给大家整理的一些 六年级数学 的知识点,希望对大家有所帮助。
六年级 毕业 考试数学重难知识点:几何面积
基本思路:
在一些面积的计算上,不能直接运用公式的情况下,一般需要对图形进行割补,平移、旋转、翻折、分解、变形、重叠等,使不规则的图形变为规则的图形进行计算;另外需要掌握和记忆一些常规的面积规律。
常用 方法 :
1.连辅助线方法
2.利用等底等高的两个三角形面积相等。
3.大胆假设(有些点的设置题目中说的是任意点,解题时可把任意点设置在特殊位置上)。
4.利用特殊规律
①等腰直角三角形,已知任意一条边都可求出面积。(斜边的平方除以4等于等腰直角三角形的面积)
②梯形对角线连线后,两腰部分面积相等。
③圆的面积占外接正方形面积的78.5%。
六年级数学知识点
1、什么是图形的周长?
围成一个图形所有边长的总和就是这个图形的周长。
2、什么是面积?
物体的表面或围成的平面图形的大小叫做他们的面积。
3、加法各部分的关系:
一个加数=和-另一个加数
4、减法各部分的关系:
减数=被减数-差 被减数=减数+差
5、乘法各部分之间的关系:
一个因数=积÷另一个因数
6、除法各部分之间的关系:
除数=被除数÷商 被除数=商×除数
7、角
(1)什么是角?
从一点引出两条射线所组成的图形叫做角。
(2)什么是角的顶点?
围成角的端点叫顶点。
(3)什么是角的边?
围成角的射线叫角的边。
(4)什么是直角?
度数为90°的角是直角。
(5)什么是平角?
角的两条边成一条直线,这样的角叫平角。
(6)什么是锐角?
小于90°的角是锐角。
(7)什么是钝角?
大于90°而小于180°的角是钝角。
(8)什么是周角?
一条射线绕它的端点旋转一周所成的角叫周角,一个周角等于360°.
六年级数学下册单元知识点:统计图
(一)意义:用点线面积等来表示相关的量之间的数量关系的图形叫做统计图。
(二)分类
1、条形统计图
用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直线按照一定的顺序排列起来。
优点:很容易看出各种数量的多少。
注意:画条形统计图时,直条的宽窄必须相同。
取一个单位长度表示数量的多少要根据具体情况而确定;
复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区别开,并在制图日期下面注明图例。
制作条形统计图的一般步骤:
(1)根据图纸的大小,画出两条互相垂直的射线。
(2)在水平射线上,适当分配条形的位置,确定直线的宽度和间隔。
(3)在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少。
(4)按照数据的大小画出长短不同的直条,并注明数量。
2、折线统计图
用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来。
优点:不但可以表示数量的多少,而且能够清楚地表示出数量增减变化的情况。
注意:折线统计图的横轴表示不同的年份、月份等时间时,不同时间之间的距离要根据年份或月份的间隔来确定。
制作折线统计图的一般步骤:
(1)根据图纸的大小,画出两条互相垂直的射线。
(2)在水平射线上,适当分配折线的位置,确定直线的宽度和间隔。
(3)在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少。
(4)按照数据的大小描出各点,再用线段顺次连接起来,并注明数量。
3、扇形统计图
用整个圆的面积表示总数,用扇形面积表示各部分所占总数的百分数。
优点:很清楚地表示出各部分同总数之间的关系。
制扇形统计图的一般步骤:
(1)先算出各部分数量占总量的百分之几。
(2)再算出表示各部分数量的扇形的圆心角度数。
(3)取适当的半径画一个圆,并按照上面算出的圆心角的度数,在圆里画出各个扇形。
(4)在每个扇形中标明所表示的各部分数量名称和所占的百分数,并用不同颜色或条纹把各个扇形区别开。
六年级数学下册知识点:圆柱和圆锥
1.认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。
2.探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。
3.通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。
4.圆柱的两个圆面叫做底面,周围的面叫做侧面,底面是平面,侧面是曲面。
5.圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。
6.圆柱的表面积=圆柱的侧面积+底面积×2即S表=S侧+S底×2或2πr×h+2×π。
7.圆柱的侧面积=底面周长×高即S侧=Ch或2πr×。
8.圆柱的体积=圆柱的底面积×高,即V=sh或πr2×。
进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。这种取近似值的方法叫做进一法。
9.圆锥只有一个底面,底面是个圆。圆锥的侧面是个曲面。
10.从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥只有一条高。(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离)
11.把圆锥的侧面展开得到一个扇形。
12.圆锥的体积等于与它等底等高的圆柱体积的三分之一,即V锥=1/3Sh或πr2×h÷。
13.常见的圆柱圆锥解决问题:
①压路机压过路面面积(求侧面积);
②压路机压过路面长度(求底面周长);
③水桶铁皮(求侧面积和一个底面积);
④厨师帽(求侧面积和一个底面积);通风管(求侧面积)。
六年级数学上册重点知识点 总结 相关 文章 :
★ 六年级上册数学知识点整理归纳
★ 六年级数学上册知识点总结
★ 六年级数学上册知识点复习
★ 六年级数学上册《百分数》知识点总结
★ 六年级上册数学知识点总结
★ 六年级数学期末复习知识点汇总
★ 六年级上册数学课本知识点归纳
★ 六年级数学上册知识点复习资料
★ 人教版六年级数学的知识点总结
★ 六年级上册数学知识点
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "/hm.js?3b57837d30f874be5607a657c671896b"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();六年级上册数学负数的认识教学设计
人教版小学六年级数学上册教学反思3篇作为一名到岗不久的老师,我们的任务之一就是教学,写教学反思可以很好的把我们的教学记录下来,怎样写教学反思才更能起到其作用呢?以下是我收集整理的人教版小学六年级数学上册教学反思,仅供参考,大家一起来看看吧。
人教版小学六年级数学上册教学反思1
《比的应用》与前面学的比的知识,尤其是分数应用题密切相关。所以我在设计教学时充分考虑到学生的实际情况,多从学生实际出发,以下就是我针对着课上做的教学反思:
一、唤起与生成
在唤起与生成环节,我充分考虑到学生已有的知识,所以在新课的导入我是这样设计的:先复习比的意义,多让学生说说两个数之间的关系,然后引出妈妈在生活中遇到的实际问题即:出示例2,学生对比中两个数之间的关系已经能够比较熟练的把握,所以对出示的例题不会感觉到陌生,同时还可以引起学生的知识冲突,打破学生的心理平衡,激发学生的学习兴趣、好奇和求知欲。
二.探究与解决
在本环节中我本着课程标准中的新理念,目的就是要改变学生原有的单纯接受式的学习方式,向自主探究的学习方式转变.充分调动、发挥学生的主体性。所以在教学过程中,我努力的把问题抛给学生,让学生在小组内自行解决,教师在全班交流的时候可以适时点评,达到方法的总结,真正实现了学习方式的转变。每一个问题的提出,我都给予学生充分的时间和空间,让学生亲自交流合作,然后再观察比较,最后得出结论。整个过程,对培养学生自主学习的能力是至关重要的。
人教版小学六年级数学上册教学反思2这是一节数学综合实践课,是学生在掌握圆的概念和周长等知识的基础上设计的,通过这个活动:一方面让学生了解运动场跑道的结构,学会确定起跑线的方法,另一方面让学生体会到数学在生活中的广泛应用。课堂由问题“他们起跑线的位置相同吗”质疑,到“为什么起跑线位置会不同”,引入让学生明确确定起跑线位置的过程是活动的重点,理解起跑线的位置与什么有关是教学得难点。
六年级学生对活动的内容并不陌生,所以课堂用多媒体课件展示运动场,开门见山的提问“他们起跑线的位置相同吗”,“为什么起跑线位置会不同”,学生通过观察、讨论达成共识:“因为每条跑道的长度不同,所以起跑线的位置也不同,外圈的起点应该往前移。”然后出示有关信息,充分让学生借助计算器,通过小组合作计算每圈跑道的长度,从而确定起跑线的位置。
数学知识来源于生活,同时也服务于生活,应用学到的知识解决实际生活中的问题,不但使学生感受到数学与生活的密切联系,而且能培养他们的创新精神,合作精神。
人教版小学六年级数学上册教学反思3一个学期马上就要过去了,回顾自己的教学过程,主要有以下所得:
1、部分学生不善于动脑思考,不会举一反三,被动接受知识的现象较普遍,因此应用知识解决问题的能力差或方法少。
2、部分学生良好的学习习惯没有培养起来。
(1)少部分学生良好的审题习惯还没有养成。
(2)少部分学生良好的检查习惯还没有养成。他们做完了题不知道检查,不会检查,明明错误在眼皮下却看不出来;有的学生是懒得检查。
3、我在教学中还有不够细致全面的地方。例如,在这学期考试中反映出部分学生对分数应用的问题掌握不好,说明我忽视了这个知识点的巩固。
针对出现的问题,我认真地进行了思考:
1、部分学生不善于动脑思考,被动接受知识的现象,原因除了他们缺乏自主学习的.意识、思想懒惰以外,和我的教学思想、教学方法有一定关系。
2、后进生之所以很难取得大的进步,主要是他们遗忘知识特别快,可能你早上刚教过的内容到下午他就忘记了。
3、良好的的学习习惯没有培养起来不是一两天的事,有些是家庭教育造成的,有些是学校教育造成的。但是一些审题的方法、计算的技巧等教师还是应该随时强调的,并要强调扎实。
通过反思,我认为除了继续沿用以前好的做法外,还应积极地采取一定的措施加以改善:
1、对于学习落后的学生,一定要让他坚持达到老师提出的要求,独立地解答习题。
2、学习先进的教育思想和教学理念,在组织教学中,坚持以学生为中心,认真探索指导学习的方法,多给学生创造一些自主学习和勇于创新的机会,激发学习主体的自觉性,让学生自己发现问题、探讨问题、解决问题,主动活泼的完成学习任务,并掌握一些基本的学习方法。
3、在改善学生学习习惯方面,需要有坚持不懈、持之以恒的精神和行之有效的方法。培养学生自我检验和自我评价能力,指导学生对自己作业中的错题分析错因,认真改错,提高正确率。
;求小学六年级上册的数学概念
往往咋i数学的教学过程中备课一项是很重要的环节,备好课才能上好课。所以,接下来,我就和大家分享人教版六年级上册数学负数的认识教学设计,希望对大家有帮助!
人教版六年级上册数学负数的认识教学设计
一、教学目标
(一)知识与技能
让学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0既不是正数也不是负数。
(二)过程与方法
结合现实情境理解负数的具体含义,学会用正数、负数表示生活中相反意义的量。
(三)情感态度和价值观
让学生了解负数产生的历史,感受正数、负数与生活的联系,结合史料进行爱国主义教育。
二、教学重难点
教学重点:结合现实情境理解负数的不同含义。
教学难点:结合现实情境理解负数的不同含义。
三、教学准备
课件。
四、教学过程
(一)谈话激趣,导入新课
1.同学们,你们在生活中见过负数吗?你知道它的含义吗?
2.究竟什么是负数?它表示的含义有什么不同呢?今天我们这节课一起认识负数(揭示课题)。
设计意图开门见山直入主题,在谈话中了解学生的认知基础,激活学生的生活经验。
(二)结合情境,理解意义
1.初步感知负数
(1)课件出示教材第2页例1。
下面是中央气象台2012年1月21日下午发布的六个城市的气温预报(2012年1月21日20时?2012年1月22日20时)。
教师:请仔细观察,说说你有什么发现?
预设:①哈尔滨的最高气温是零下19℃,最低气温是零下27℃;海口最热,最高气温是23℃?②-12℃表示零下十二摄氏度(读作负十二摄氏度);零下温度在数字前加?-
(2)-3℃和3℃表示的意思一样吗?请在温度计中表示出来。
预设:①-3℃表示零下三度,3℃表示零上三度;②它们表示的意义相反;③先找0℃,往下数三格表示-3℃,往上数三格表示3℃。
(3)0℃表示什么意思?
预设:①0℃表示天气很冷;②0℃表示淡水开始结冰的温度;③0℃是零上温度和零下温度的分界线。
小结:比0℃低的温度叫零下温度,通常在数字前加?-?(负号)。比0℃高的温度叫零上温度,在数字前加 (正号),一般情况下正号可省略不写。
(4)请在温度计上表示-18℃,比一比-3℃和-18℃哪个温度低?
设计意图利用学生熟悉的气温引入负数,初步了解负数的读写方法,体会0的特殊性,并通过提问?-3℃和3℃表示的意思一样吗?引导学生初步感知用正数、负数表示两种相反意义的量。
2.认识正负数
(1)课件出示教材第3页例2。
教师:研究完气温,再来看看存折上的数。你们又有什么发现呢?说说这些数各表示什么?
预设:①2000.00表示存入2000元;②500.00和-500.00的意义恰好相反,一个是存入500元,一个是支出500元。
(2)教师:像零上温度与零下温度、收入与支出这样表示两种相反意义的量,生活中还有许多。你能举出这样的实例吗?
预设:水面上升2米、下降2米;乘车时上客5人、下客6人;货物运进200吨、运出150吨?
(3)我们怎样来表示像这样两种相反意义的量呢?
教师:为了表示两种相反意义的量,需要用两种数。一种是我们以前学过的数,如3、500、4.7、《负数的认识》教学设计,这些数是正数;另一种是在这些数的前面添上负号?-?的数,如-3、-500、-4.7、-《负数的认识》教学设计等,这些数是负数。那么0是什么数呢?(0既不是正数,也不是负数,它是正数与负数的分界线。)
(4)基本练习(课件出示教材第4页?做一做?第2题)
请学生独立思考,哪些是正数,哪些是负数,并填入相应的圈中。
《负数的认识》教学设计
《负数的认识》教学设计《负数的认识》教学设计
设计意图在具体生活实例中让学生体会负数产生的必要性,认识正数、负数,初步建立正数、负数的概念。同时在出示的负数中有-7、-5.2、-《负数的认识》教学设计,让学生感知负数中有负整数、负分数和负小数。
(三)回归生活,拓展应用
教师:在日常生活中,人们还有好多时候要用到正数、负数,让我们一起接着看一看!
1.课件出示教材第6页练习一第1题。
《负数的认识》教学设计
(1)学生独立完成,集体反馈。
(2)看了这些信息,你有什么感受?月球表面白天的平均温度和夜间的平均温度相差多少度?
2. 课件出示教材第6页练习一第5题。
《负数的认识》教学设计
《负数的认识》教学设计
(1)仔细读题,你获得了什么信息?有什么不明白的?(介绍:海平面就是海的平均高度;海拔是地面某个地点高出海平面的垂直距离。)
(2)独立完成,集体反馈。
(3)你知道你所在城市的海拔高度吗?说说它的具体含义。3课件出示教材第6页练习一第2《负数的认识》教学设计
(1)仔细读题,说说你知道了什么信息?
(2)请表示出悉尼、伦敦的时间。北京时间用什么表示?
(3)以北京时间为标准,孟加拉国首都达卡的时间记为-2时,你知道它此时的时间吗?
(4)你还知道此时其他时区的时间吗?试着表示出来。
4.课件出示练习题。
某食品厂生产的120克袋装方便面外包装印有?(120?5)克?的字样。小明购买一袋这样的方便面,称一下发现117克,请问厂家有没有欺骗行为?为什么?
(1)说说你知道了什么信息?
(2)?120?5?表示什么意思?
(3)如果120克记作0克,117克可以记作多少克?
设计意图通过生活中的信息,让学生学习用正数、负数表示两种具有相反意义的量,丰富了对正数、负数意义的理解。
(四)了解历史,课堂总结
1.课件出示教材第4页?你知道吗?内容。
其实,负数的产生和发展有着悠久的历史,我们一起来了解一下。
(1)看了介绍,你对负数又有什么新的认识?
(2)你有什么感受?
设计意图用图文结合的方式向学生介绍负数的发展史,让学生体会负数发展的历程和中国在负数发展上做出的贡献,激发学生的民族自豪感,进一步丰富学生对负数的认识。
2.这节课你有什么收获?
教师:关于负数,生活中还有更多的知识等待我们去探索,只要同学们做善于观察的有心人,在今后的生活和学习中会有更多的收获。
看了六年级上册数学负数的认识教学设计的人还看:
1. 六年级上册数学负数的认识教案
2. 六年级上册语文正负数教案
3. 六年级下册数学负数的初步认识教案
4. 六年级上册负数的初步认识练习题及答案
5. 六年级负数数学教学反思
6. 2017年六年级上册数学图形与几何教案
人教版小学六年级数学上册概念整理汇总
单元一 位置
1.找位置:先列后行。格式为:(列,行)。 例如:(a,b)。
2.位置的表示方法:①、两边小括号;②、中间是逗号;③先写列,再写行。
3.平移方法:左右平移,列变行不变;上下平移,行变列不变。
单元二 分数乘法
1.分数乘整数的意义和整数乘法的意义相同:就是求几个相同加数的和的简便运算。
例如: + + = ×3(b 0)
2.分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。 例如:a× ( ×a) = (为了计算简便,能约分的要先约分,然后再乘。)
注:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算
3.整数乘分数;
①、分数乘以整数,可以看作是求几个分数相加的和是多少。
例如: ×n= + + 、、、、、、(b 0)
②、整数乘以分数,可以看作是求整数的几分之几是多少。
例如:n× 的意义是:表示求n的 是多少。
4.分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。 例如: × = (b、d 0) 注:为了计算简便,可以先约分再乘
5.乘积是1的两个数叫互为倒数。 例如: × =1,那 和 就是互为倒数。
6.求一个数(0除外)的倒数的方法: 把这个分数的分子、分母调换位置。
1的倒数是1。0没有倒数。
真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
注:倒数必须是成对的两个数,单独的一个数不能称做倒数
7.一个数(0除外)乘以一个真分数,所得的积小于它本身。
8.一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
9.一个数(0除外)乘以一个带分数,所得的积大于它本身。
10.解答分数乘法应用题相关概念:
①分数乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?
②找单位“1”的方法:从含有分数的关键句中找,注意“的”前;“比”后的规则。
③“增加”、“提高”、“增产”是“多”的意思;“减少”、“下降”、“裁员”是“少”的意思;“相当于”、“占”、“是”“等于”的意思。
④当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、“甲比乙少几分之几”的形式。
单元三 分数除法概念总结
1.分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
例如:表示:已知两个数的积是 与其中一个因数 ,求另一个因数是多少。
2.①、分数除以整数(0除外),等于分数乘这个整数的倒数。
例如: ÷c= × (a、c 0)
②整数除以分数等于整数乘以这个分数的倒数。
例如:c÷ =c× (a 0)
3.分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
4.两个数相除又叫做两个数的比。
5、“:”是比号,读做“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
例如:a:b= (a是比的前项;b是比的后项; 是比值,比值一般是分数,可以是整数、也可以是小数)
6、求比值、化简比的方法:都可以用前项÷后项。例如: : = ÷ (b、d 0)
8.比同除法比较:比的前项相当于被除数,后项相当于除数,比值相当于商。
例如:a:b=a÷b= (b 0)。
9.根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。 例如:a:b=a÷b= (b 0)。
10.比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。 例如:a:b= a :b = (b 0)
11.在工农业生产中和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。
12、①、一个数(0除外)除以一个真分数,所得的商大于它本身。
②、一个数(0除外)除以一个假分数,所得的商小于或等于它本身。
③、一个数(0除外)除以一个带分数,所得的商小于它本身。
单元四 圆
1.圆的定义:平面上的一种曲线图形。 例如:“O”。
2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。圆心一般用字母O表示。它到圆上任意一点的距离都相等. 例如:“⊙”
3.半径:连接圆心到圆上任意一点的线段叫做半径。半径一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。 例如:“⊙”
4.圆心确定圆的位置,半径确定圆的大小。
5.直径:通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d表示。
例如:“⊙”
6.①在同一个圆内,所有的半径都相等,所有的直径都相等。
②在同一个圆内,有无数条半径,有无数条直径。
③在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。
用字母表示为:d=2r或r =d÷2
7.圆的周长:围成圆的曲线的长度叫做圆的周长,用“C”表示。
8.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。我们把任意一个圆的周长和直径的比值叫做圆周率,用字母“π”表示。圆周率是一个无限不循环小数。在计算时,取π ≈3.14。
9.圆的周长公式:C= πd 或C=2πr
10.圆的面积:圆所占面积的大小叫圆的面积。S=π×r×r=πr?
11.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
12.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
13.一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=πR?-πr?
或 S=π(R?-r?)。(其中R=r+环的宽度.)
14.环形的周长=外圆周长+内圆周长
15.半圆的周长等于圆的周长的一半加直径。(C=2πr× +2r)
半圆的周长公式:C=πd× +d 或 C=πr+2r 或C=2πr× +2r
16.半圆面积=圆的面积÷2 公式为:S=πr?÷ 2
17.在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小以上倍数的平方倍。
例如:在同一个圆里,半径扩大4倍,那么直径和周长就都扩大4倍,而面积扩大16倍。
18.两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方。
例如:两个圆的半径比是2:3,那么这两个圆的直径比和周长比都是2:3,而面积比是4:9。
19.①当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;
②当一个圆的直径增加a厘米时,它的周长就增加πa厘米。
20.在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积就占圆面积的几分之几;所对的弧就占圆周长的几分之几.
21.当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小。
22.轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。
23.①只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
②只有2条对称轴的图形是:长方形
③只有3条对称轴的图形是:等边三角形
④只有4条对称轴的图形是:正方形;
⑤有无数条对称轴的图形是:圆、圆环。
24.直径所在的直线是圆的对称轴。
25.环形的面积公式:S=πR?-πr?或S=π(R?-r?)
单元五 百分数
1.百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
百分数表示两个数之间的比率关系,不表示具体的数量,无单位名称。
2.百分数的意义:表示一个数是另一个数的百分之几。例如:25%的意义:表示一个数是另一个数的25%。
3.百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。分子部分可为小数、整数,可以大于100,小于100或等于100。
①小数与百分数互化的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,只要把百分号去掉,同时把数点向左移动两位。
②百分数与分数互化的方法:把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数;
③百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
6.百分率公式:
合格率= 合格人数÷总人数100% 发芽率= 发芽数量÷总数量100%
出勤率= 出勤人数÷总人数100%
7.应纳税额:缴纳的税款叫应纳税额。
8.应纳税额的计算:应纳税额=各种收入×税率
9.本金:存入银行的钱叫做本金。
10.利息:取款时银行多支付的钱叫做利息。
11.利率:利息与本金的比值叫做利率。
12.国债利息的计算公式:利息=本金×利率×时间
13.本息:本金与利息的总和叫做本息。
单位换算
1、长度单位换算
1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米
2、面积单位换算
1平方千米=100公顷 1公顷10000平方米 1平方米=100平方分米
1平方分米=100平方厘米
3、体(容)积单位换算
1立方米=1000立方分米 1立方分米=1升 1立方分米=1000立方厘米
1立方厘米=1毫升
4、重量单位换算:1吨=1000千克 1千克=1000克
运算定律
1.加法交换律:两数相加交换加数的位置,和不变。 a+b=b+a
2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。 如:a+b+c=a+c+b=a+(b+c)
3.乘法交换律:两数相乘,交换因数的位置,积不变。 ab=ba
4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。 如:a×b×c=a×c×b=a×(b×c)
5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。 如:(a b)×c=ac bc
6、加、减法性质:一个数连续减去几个数,可以改写成减去这几个数的和。
如:a-b-c=a-(b+c)
7、乘、除法性质:一个数连续除以几个数,可以改写成乘以这几个数的积。
a÷b÷c=a÷(b×c)
好了,今天关于“人教版六年级上册数学”的话题就讲到这里了。希望大家能够通过我的介绍对“人教版六年级上册数学”有更全面的认识,并且能够在今后的实践中更好地运用所学知识。如果您有任何问题或需要进一步的信息,请随时告诉我。